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Making Research Decisions: Sampling
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Sampling is a powerful tool and a critical part of communication campaign
research because it has a direct relationship to the generalizability of re-
search results. Practitioners use sampling in partnership with the research
methods they select to help them solve complex problems, monitor their
internal and external environments, and engage in sophisticated campaign
planning and evaluation. Sampling helps practitioners get accurate infor-
mation quickly at a relatively low cost. It provides then with a cost-effective
way to collect information from a relatively small number of target audi-
ence members, called a sample, and draw conclusions about an entire target
audience. These processes are based on principles of statistical sampling
and inference.
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Although it sounds complex, sampling really is simple. If we want to
know whether our spaghetti sauce needs more garlic, we usually taste a
small sample. We do not need to eat all of the sauce to determine whether
more garlic is needed (and by the way, the sauce almost always needs more
garlic). Researchers sample people in the same way. It is not necessary to
contact all members of a target audience to understand their opinions, at-
titudes, and behaviors. Instead, practitioners can learn this information
from a properly selected sample of target audience members with a high
degree of confidence that they are accurate. The purpose of this chap-
ter is to explain basic aspects of sampling including both probability and
nonprobability sampling methods and sample size calculations, in a sim-
ple, easy-to-understand manner. Math phobes, note that we use only a
relatively small amount of math in this chapter. Instead of manipulating
numbers, we want readers to develop a conceptual understanding of the
principles of sampling and statistical inference.

SAMPLING BASICS

Even though sampling methods are relatively easy to understand and use,
understanding a few basic terms and concepts makes it easier to under-
stand sampling practices. Although these definitions are not terribly in-
teresting, they make it a lot easier to understand principles of sampling
and inference. At a basic level, readers should understand the difference
between a population and a sample. A population or universe consists of all
the members of a group or an entire collection of objects. In public relations,
a population most commonly refers to all the people in a target audience or
public. When researchers conduct a census, they collect information from
all members of a population to measure their attitudes, opinions, behav-
iors, and other characteristics. These measurements, called parameters, are
the true values of a population’s members; parameters are a characteristic
or property of a population. In theory, parameters contain no error because
they are the result of information collected from every population member.
Often, parameters are expressed in summary form. If our research reveals
that 59% of voters in King County, Washington, support a property tax
initiative, for example, this characteristic is a parameter of the population
of all voters in King County.

Research professionals and social scientists often find it difficult or im-
possible to conduct a census because they are expensive and time con-
suming. More important, a census is unnecessary in most situations. By
collecting information from a carefully selected subset, or sample, of popu-
lation members, researchers can draw conclusions about the entire popu-
lation, often with a high degree of accuracy. This is why sampling is such
a powerful part of communication campaign research.
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A sample is a subset of a population or universe. When researchers con-
duct a survey using a sample, they use the resulting data to produce sample
statistics. Sample statistics describe the characteristics of the sample in the
same way that population parameters describe the characteristics of a pop-
ulation. Statistics result from the observed scores of sample members instead
of from the true scores of all population members, and they necessarily con-
tain some error because of this. The amount of error contained in sample
statistics, however, usually is small enough that researchers can estimate,
or infer, the attitudes, behaviors, and other characteristics of a population
from sample statistics, often with a high degree of confidence.

If you find all of this confusing, read this section again slowly and it
will become more clear, although no more exciting (we suggest taking
two aspirin first). This topic and chapter improve in terms of their ease of
understanding, but it is important for readers to have a basic understanding
of sampling terminology and concepts before we discuss other aspects of
sampling. It also becomes more clear as we move into discussions of sample
representation, sampling techniques, and sample size calculations.

GENERALIZING FROM A SAMPLE TO A POPULATION

Researchers normally collect data to make generalizations. During a state
gubernatorial election in Michigan, for example, a political campaign man-
ager may survey a sample of registered voters to determine the opinions
of all registered voters in the state. In this case, the campaign manager
wants to generalize the results of the survey from a relatively small sample
(perhaps consisting of no more than several hundred people) to all regis-
tered voters in the state. This process of generalization, when researchers
draw conclusions about a population based on information collected from
a sample, is called inference. Researchers generalize findings from samples
to populations on a regular basis. How can researchers generalize in this
way and be confident they are right? A sample must accurately represent
the population from which it is drawn to allow investigators to make valid
inferences about the population based on sample statistics.

An often-used example from the annals of survey research helps make
the point. In 1920, editors of the Literary Digest conducted a poll to see
whether they could predict the winner of the presidential election between
Warren Harding and James Cox. Editors gathered names and addresses
from telephone directories and automobile registration lists and sent post-
cards to people in six states. Based on the postcards they received, the
Literacy Digest correctly predicted that Harding would win the election.
Literacy Digest editors repeated this same general process over the next
several elections and correctly predicted presidential election winners in
1920, 1924, 1928, and 1932.
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Literacy Digest editors again conducted a poll to predict the winner of
the 1936 election. This project was their most ambitious yet. This time,
they sent ballots to 10 million people whose names they drew from tele-
phone directories and automobile registration lists, as before. More than
2 million ballots were returned. Based on the results of its survey, the ed-
itors predicted that Republican challenger Alfred Landon would receive
57% of the popular vote in a stunning upset over Democratic incumbent
Franklin Roosevelt. Roosevelt was reelected, however, by the largest mar-
gin in history to date. He received approximately 61% of the popular vote
and captured 523 electoral votes to Landon’s 8. What went wrong?

Simply put, the sample was unrepresentative. Literacy Digest editors
drew the sample from telephone directories and automobile registration
lists, both of which were biased to upper income groups. At that time, less
than 40% of American households had telephones and only 55% of Amer-
icans owned automobiles. The omission of the poor from the sample was
particularly significant because they voted overwhelmingly for Roosevelt,
whereas the wealthy voted primarily for Landon (Freedman, Pisani, &
Purves, 1978). Not only was the sample unrepresentative, but the survey
method and low response rate (24%) contributed to biased results.

This often-used example illustrates a key point about the importance of
sample representativeness. The results of research based on samples that
are not representative do not allow researchers to validly generalize, or
project, research results. It is unwise for investigators to make inferences
about a population based on information gathered from a sample when
the sample does not adequately represent a population. It is a simple, but
important, concept to understand.

In fact, George Gallup (of Gallup poll notoriety) understood the con-
cept well. In July 1936, he predicted in print that the Literary Digest poll
would project Landon as the landslide winner and that the poll would
be incorrect. He made these predictions months before the Literacy Digest
poll was conducted. He also predicted that Roosevelt would win reelec-
tion and perhaps receive as much as 54% of the popular vote. Gallup’s
predictions were correct, even though his numbers concerning the elec-
tion were off. How could Gallup be sure of his predictions? The primary
basis of his explanation was that the Literary Digest reached only middle-
and upper-class individuals who were much more likely to vote Repub-
lican. In other words, he understood that the Literacy Digest sample was
not representative (Converse, 1987). As an additional note, for those who
believe that a larger sample always is better, here is evidence to the con-
trary. When researchers use nonprobability sampling methods, sample size
has no scientifically verifiable effect on the representativeness of a sam-
ple. Sample size makes no difference because the sample simply is not
representative of the population. A large, unrepresentative sample is as
unrepresentative as a small, unrepresentative sample. In fact, had editors
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used a probability sampling method along with an appropriate survey
method, a sample size of less than 1% of the more than 2 million voters
who responded to the Digest poll almost certainly would have produced a
highly accurate prediction for both the Literary Digest editors and George
Gallup.

SAMPLING METHODS

Sampling is the means by which researchers select people or elements in a
population to represent the entire population. Researchers use a sampling
frame—a list of the members of a population—to produce a sample, using
one of several methods to determine who will be included in the sample.
Each person or object in the sample is a sampling element or unit. When
practitioners study target audience members, the sampling frame typically
consists of a list of members of a target audience, whereas the sampling
unit is an individual person. All the sampling units together compose the
sample. If a nonprofit organization wants to examine the perceptions and
opinions of its donors, for example, the sampling frame might be a mailing
list of donors’ names and addresses, whereas the sampling unit would be
the individual names and addresses selected from the list as part of the
sample. When researchers generate a sample, they select sampling units
from the sampling frame.

When researchers draw a sample, their goal is to accurately represent
a population. This allows them to make inferences about the population
based on information they collect from the sample. There are two types of
samples: probability and nonprobability. Researchers select probability sam-
ples in a random way so that each member of a population has an equal
chance, or probability, of being included in a sample. When researchers
draw a nonprobability sample, an individual’s chance of being included
in a sample is not known. There is no way to determine the probability
that any population member will be included in the sample because a non-
random selection process is used. Some population members may have no
chance of being included in a sample, whereas other population members
may have multiple chances of being included in a sample.

When researchers select probability, or random, samples, they normally
can make accurate inferences about the population under study based on
information from the sample. That is, probability samples tend to produce
results that are highly generalizable from a sample to a population. When
researchers select samples in any way other than probability-based, ran-
dom sampling, they cannot be sure that a sample accurately represents
the population from which it was drawn. In this case, they have no basis
for validly making inferences about a population from the sample. Even
though a nonprobability sample may perfectly represent a population, in-
vestigators cannot scientifically demonstrate its level of representativeness.



102 CHAPTER 6

For this reason, the results of research that use nonprobability samples are
low in generalizability (external validity).

Why use nonprobability sampling if the research results it produces are
not representative? In some cases, researchers may use a nonprobability
sample because it is quick and easy to generate. At other times, the cost of
generating a probability-based sample may be too high, so researchers use
a less expensive nonprobability sample instead. The use of a nonprobability
sample is not automatically a problem or even necessarily a concern. It is
a significant limitation, however, in practitioners’ application of research
results to campaign planning and problem solving. Research managers
often use nonprobability samples in exploratory research or other small-
scale studies, perhaps as a precursor to a major study. In addition, some
commonly used research methods, such as focus groups or mall intercept
surveys, rely exclusively on nonprobability sampling.

The lack of generalizability should serve as a warning to communication
campaign managers. Do not assume research results based on nonproba-
bility samples are accurate. When practitioners want to explore a problem
or potential solution in an informal fashion, get input on an idea, or ob-
tain limited feedback from members of a target audience, a nonprobability
sample normally is an acceptable choice. As editors of the Literary Digest
discovered, however, nonprobability samples have limitations and should
not serve as the sole basis by which practitioners seek to understand audi-
ences and develop programs.

NONPROBABILITY SAMPLING METHODS

There are several methods of generating nonprobability samples. No mat-
ter how random the selection process appears in each of these sampling
methods, researchers do not select sample members in a random manner.
This means that population members have an unequal chance of being
selected as part of a sample when investigators use these sampling meth-
ods. The most common types of nonprobability sampling are incidental
(also called convenience) sampling, quota sampling, dimensional sampling,
purposive (judgmental) sampling, volunteer sampling, and snowball
sampling.

Incidental, or Convenience, Sampling

Researchers select incidental, or convenience, samples by using whoever
is convenient as a sample element. A public opinion survey in which inter-
viewers stop and survey those who walk by and are willing to participate
constitutes such a sample. Mall intercepts generally rely on convenience
samples because their sample consists of shoppers who happen to walk
by and are willing to complete a questionnaire. Like all nonprobability
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samples, incidental samples do not generally provide accurate estimates of
the attributes of a target population. There simply is no way for researchers
to determine the degree to which research results from a convenience sam-
ple are representative of a population. Like all nonprobability sampling
methods, incidental samples are most appropriate when research is ex-
ploratory, precise statistics concerning a population are not required, or the
target population is impossible to accurately define or locate (Johnson &
Reynolds, 2005).

Quota Sampling

When researchers use this sampling method, they often are interested in
the subgroups that exist in a population and draw their sample so that it
contains the same proportion of subgroups. Investigators fill the quotas
nonrandomly, typically using sample members who are convenient to fill
subgroup quotas. In practice, research staff members typically base quo-
tas on a small number of population characteristics such as respondents’
age, sex, educational level, type of employment, or race or ethnicity. An
interviewer conducting a survey on a college campus, for example, might
be assigned to interview a certain number of freshmen, sophomores, ju-
niors, and seniors. The interviewer might select the sample nonrandomly
by standing in front of the university library and asking people to com-
plete a survey. Interviewers would stop surveying members of individual
population subgroups as they filled each quota.

Dimensional Sampling

This method is similar to quota sampling in that researchers select study
participants nonrandomly according to predetermined quota, but project
managers extend sample quotas to include a variety of population at-
tributes. Generally, interviewers ensure that they include a minimum num-
ber of individuals for various combinations of criteria. Extending the col-
lege survey example, interviewers might nonrandomly select participants
to meet additional criteria, or dimensions. Interviewers might have to in-
terview a minimum number of males and females, traditional and non-
traditional students, or married and unmarried students, for example, in
addition to the class quota. Interviewers could use a seemingly endless
number of potential attributes to stratify a sample.

No matter how many attributes research team members use when se-
lecting a sample, they select both quota and dimensional sample members
using nonprobability selection methods. The result is that researchers can-
not determine whether their participants fully represent the similarities
and differences that exist among subgroups in the population. Ultimately,
there is no scientific way to determine whether a nonprobability sample is
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representative and no scientific evidence to suggest quota sampling is more
representative than other nonprobability sampling methods. Researchers
correct the nonprobability selection weakness of quota sampling and di-
mensional sampling when they use stratified sampling, which we address
shortly.

Purposive Sampling

In purposive, or judgmental, sampling, researchers select sample members
because they meet the special needs of the study based on the interviewer’s
judgment. A researcher’s goal when using purposive sampling typically is
to examine a specially selected population that is unusually diverse or par-
ticularly limited in some way, rather than to study a larger, more uniform
population (Johnson & Reynolds, 2005). If a product manufacturer wants
to open a new plant in another country, for example, company manage-
ment needs to learn the concerns of local business, government, and labor
leaders. In this case, the sample is relatively small and diverse, and inter-
viewers may simply select sample members using their own discretion to
determine which respondents fit into the sample and are “typical” or “rep-
resentative.” This creates situations in which sample-selection decisions
may vary widely among interviewers. Even if the definition of the popu-
lation is reasonably clear, the procedures researchers use when drawing a
sample may vary greatly among interviewers, limiting the comparability of
sample members (Warwick & Lininger, 1975). These nonrandom selection
procedures limit the generalizability of research results based on purposive
samples, as is the case with all nonprobability sampling methods.

Volunteer Sampling

When media organizations ask viewers to call in or e-mail their opinions,
they are using a volunteer, or self-selected, sample. Instant phone-in polls
have become a common way for the media to determine and report so-
called public opinion, for example, in an attempt to attract and keep the
interests of viewers and listeners. There are numerous potential sources
of bias when research is based on a volunteer sample. First, sample rep-
resentation is hindered because only the people who are exposed to the
survey have an opportunity to participate. All other potential respondents
are unaware of the poll. Second, those who feel strongly about the topic
of a poll may view the survey as an opportunity to vote for their view-
point. Such individuals may respond more than once and/or encourage
other like-minded individuals to respond in the same way. The result is
that volunteer samples are not representative, and research results based
on volunteer samples are highly untrustworthy. Organizations that use
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volunteer samples should use them strictly for their entertainment value,
not their scientific value.

Snowball Sampling

When researchers use snowball sampling, they collect data from a limited
number of population members and then ask these individuals to identify
other members of the population who might be willing to participate in
the study. The sample continues to grow as new research participants di-
rect interviewers to additional sample prospects. The sample snowballs,
starting from a small number of people and growing larger as each new
participant suggests other potential participants.

Researchers may have no choice but to have to rely on snowball sam-
pling when they can locate only a few members of a population. If a social
welfare organization wanted to learn about the particular difficulties of mi-
grant workers, for example, it might start by interviewing those migrant
workers it could locate. After each interview was concluded, interviewers
could ask participants to identify other workers who might be willing to
participate in the study. Interviewers hope the sample would grow to a de-
sirable size through this process. Research results based on such a sample,
however, have little or no generalizability, no matter how large the sample
grows. A snowball sample relies on nonrandom methods of selection, and
there is no way to scientifically determine the degree to which it repre-
sents the population from which it is drawn because of this. As with all
projects based on nonprobability samples, managers need to interpret and
generalize research findings resulting from snowball samples carefully.

PROBABILITY SAMPLING METHODS

Researchers generate probability samples using a random selection process
so that each member of a population has an equal chance, or probability,
of being included in a sample. The use of probability sampling normally
allows investigators to make accurate inferences about a population based
on information collected from a sample. Investigators’ inferences, or con-
clusions, about the population are not perfectly accurate even when they
use probability sampling. Researchers calculate estimates of the popula-
tion parameter within a given range of possible values at a specific level
of probability. The result of this process is that research findings based
on probability samples normally are highly representative. That is, they
possess a high degree of generalizability, or external validity. The most
common type of probability sample is simple random sampling. Common
variations of simple random sampling include systematic sampling, strat-
ified sampling, and cluster sampling.
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Simple Random Sampling

Researchers must ensure that each member of a population has an equal
chance of being included in a sample and select each sample element in-
dependently to produce a random sample. Simple random sampling is the
most basic method of random sampling, and investigators use it to ensure
that the sample they produce is representative of the population. Although
true representation never is guaranteed unless a census is taken, the use of
a random-selection process significantly reduces the chances of subgroup
overrepresentation or underrepresentation, which helps eliminate sample
bias. Researchers then can estimate, or infer, population parameters based
on sample statistics. Although these inferences are not perfect—they have
some error—investigators use statistical procedures to understand this
error as noted previously.

From a practical standpoint, the primary requirement for simple ran-
dom sampling is that researchers clearly and unambiguously identify each
member of a population through the use of a comprehensive sampling
frame. This allows the direct, independent, and random selection of sam-
ple elements, typically through a list in which each element is identified
(Warwick & Lininger, 1975). The most common methods of simple random
sampling use a list of population members for a sample frame. Research
staff members might number each element on the list sequentially, for
example, and select the sample by using a table of random numbers or a
computer program that produced random numbers. Each number selected
by researchers would correspond with a member of the sampling frame.
The result is a random sample that normally is highly representative of its
population.

If the Public Relations Society of America (PRSA) wanted to survey its
members to determine their level of satisfaction with its programs and ser-
vices, a project manager could take a membership list and assign a number
to each PRSA member sequentially. The manager would create the sam-
ple by randomly generating numbers assigned to specific PRSA members.
Staff members would produce more numbers until they generated an ap-
propriate sample size. If properly conducted, this random process would
produce a probability sample of PRSA members who have a high likelihood
of accurately representing the attitudes and opinions of all the members of
PRSA.

Systematic Random Sampling

Researchers use an unbiased system to select sample members from a list
when they use systematic random sampling. This system allows them to
generate a probability-based sample that normally is highly representative
of the population from which it was drawn, without some of the inconve-
niences associated with simple random sampling. Those who use simple
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random sampling often find the process long and unnecessarily tedious,
especially when a population is large. When researchers use systematic
random sampling, they develop an uncomplicated system using the total
sample size and the size of the population to help them draw a probability-
based sample relatively easily.

First, research team members determine the final number of completed
interviews they need for a study. Researchers often need to generate a total
sample that is several times larger than their targeted number of completed
interviews because of the number of sample elements who are difficult to
contact or who refuse to participate in a survey. Once researchers determine
the total sample size, they determine a sampling interval by dividing the
number of elements in the sampling frame (this is the total population) by
the desired total sample size. The result is a number (n) that researchers use
to generate a sample by selecting every nth element from a sampling frame.
Researchers must select the first sample element randomly from the frame
to produce a probability sample, so they randomly select the first element
from within the sampling interval. They complete the sample-selection
process by selecting every nth element from the sampling frame and the
result is a systematic random sample.

An example helps to clarify systematic random sampling. If corporate
personnel managers want to survey their classified staff as part of a pro-
gram to improve employee relations, their first step is to determine the final
number of completed interviews they want for the study. We discuss sam-
ple size calculations later in this chapter, but for this example, let’s say that
after some careful thinking and a little fun with math, administrators de-
termine they want a total of approximately 400 completed interviews from
the approximately 6,000 employees who work as full- or part-time classi-
fied staff. After some additional calculations (explained in chapter 12), re-
searchers determine that an original total sample size of 850 classified staff
members would produce about 400 completed surveys from participants,
as shown in Figure 6.1. The projects’ directors decide to use a mailing list of
classified staff members as a sampling frame because it contains the names
and addresses of all classified staff members and has no duplicate listings.
They divide the sampling frame (6,000) by the original sample size (850) to
determine the sampling interval (approximately 7). Project managers must
select the first sample element randomly, so they use a table of random
numbers to produce the first number between 1 and 7. If project managers
drew the number 5, they would draw the sample by selecting the fifth name
on the list and selecting every seventh name after that. Thus, researchers
would draw name 5, name 12, name 19, name 26, and so on. By using the
sampling interval, researchers produce a systematic random sample.

Systematic random samples and simple random samples are not ex-
actly the same; however, systematic samples closely approximate simple
random samples to produce a probability sample that normally is highly
representative. In terms of bias, the greatest danger researchers face when
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Final sample size
(Actual participants)

FIG. 6.1. The relationship of final sample size to total sample size. Communication managers need

to generate a total original sample that is several times larger than required for their final sample

because of the number of people who cannot be contacted or refuse to participate in a survey.

they use systematic sampling is periodicity. Periodicity refers to bias that oc-
curs when a sampling list has a cyclical repetition of some population char-
acteristic that coincides with a sampling interval. If this occurs, the sample
elements selected are not generalizable to the population from which they
were drawn. Researchers should be careful to inspect population lists be-
fore sampling to make sure there are no obvious signs of periodicity. When
researchers are careful, the potential for bias in systematic sampling nor-
mally is small. Ultimately, researchers use systematic random sampling
more than simple random sampling because of its simplicity and useful-
ness in complex sampling situations (Sudman, 1976).

Stratified Sampling

Researchers divide a population into different subgroups, or strata, when
they engage in stratified sampling, similar to quota sampling. The key
difference between the methods is that investigators use a random,
probability-based method to select sample elements when they engage in
stratified sampling, whereas they use a nonrandom, nonprobability-based
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method to select sample elements when they engage in quota sampling.
Researchers have two primary reasons for stratification: to control the rep-
resentativeness of the sample and to use different probability-based selec-
tion procedures in different strata (Warwick & Lininger, 1975). Researchers
also may use stratified sampling when they are primarily interested in the
key similarities and differences among members of strata, when the prior
information they have for individual strata is different, or when they want
to improve sampling efficiency when research costs differ by strata (Sud-
man, 1976).

Researchers use two types of stratified sampling: proportional and dis-
proportional. When they use proportional sampling, project managers draw
sample members from each stratum in proportion to their existence in
the population. The resulting sample proportionally represents individ-
ual strata as they exist in a population. Researchers use disproportionate
sampling to help ensure that the overall sample accurately produces re-
sults that represent the opinions, attitudes, and behaviors of a significant
stratum within the population. Project managers may use disproportionate
sampling when strata are too small to be accurately represented in a sample
selected through other means. In this case, research staff may find it neces-
sary to weight the data to obtain unbiased estimates of the total population.
This may be necessary, for example, when researchers’ use of other prob-
ability sampling methods would underrepresent the opinions, attitudes,
and behaviors of minority members of a population. When researchers use
either proportional or disproportional stratified sampling to their advan-
tage, they can produce highly representative, probability-based samples.

Cluster Sampling

Researchers select sample elements using groups rather than individuals
when they use cluster sampling. The sample frame consists of clusters
rather than individuals, and each cluster serves as a sample element. The
clusters researchers use for sampling commonly are preexisting natural
groups or administrative groups of the population. These may include
geographical designations such as neighborhoods, cities, counties, or zip
code areas, for example, or other common groupings such as universities,
hospitals, or schools.

Researchers often use cluster sampling to make data collection more
efficient (Sudman, 1976). If a metropolitan school district wanted to learn
about the attitudes and experiences of its students, it could send interview-
ers to meet one on one with individually selected student sample members.
This process, however, would be expensive and increase the time needed
to complete the project. If researchers used schools as sample clusters and
randomly selected from among them, the project would require less time
and travel, which would increase the efficiency of data collection.
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Investigators also use cluster sampling when a comprehensive list of
sample elements is not available. If an organization wanted to sample
city residents as part of a community relations program, project managers
would likely have trouble locating a complete list of all community resi-
dents, and the process would be costly and time consuming. If researchers
wanted to use cluster sampling, they could create a sampling frame by us-
ing city blocks as clusters. After research staff identified and labeled each
block, they could randomly select an appropriate number of blocks. Next,
researchers would randomly sample dwelling units within each block. Fi-
nally, interviewers would randomly sample people living in each dwelling
unit and collect data. Researchers call this sampling process multistage sam-
pling because sampling takes place in different stages; they select city blocks
in stage one, followed by dwelling units in stage two and individual people
in stage three.

Researchers’ primary concern when using cluster sampling is the poten-
tial for increased error relative to other probability-based sampling meth-
ods. When investigators use cluster sampling, standard error may increase
if sample members’ attitudes, behaviors, and other characteristics gener-
ally are the same, or homogeneous, within each cluster. In this instance,
samples selected from within homogeneous clusters will not reflect the di-
versity of attitudes and behaviors that exist in the larger population. Project
managers can help counter this problem by selecting a high number of
small clusters and selecting a relatively low number of sample elements
from within each cluster (Johnson & Reynolds, 2005).

Cluster samples, along with systematic and stratified samples, are ac-
ceptable alternatives to simple random sampling. In each case, population
elements have an equal chance of being included in a sample. Ultimately,
researchers’ choice of a sampling method often depends on the time and
money available for a project, the population being sampled, the subject
under investigation, and the availability of a comprehensive list of target
population members.

HOW BIG SHOULD A SAMPLE BE?

One of the first questions clients, managers, and others involved in a re-
search project typically ask is “What is the best sample size for a project?”
Unfortunately, as is the case so often in life and particularly in survey re-
search, the answer is a firm “it depends.” In fact, the methods researchers
use to determine the appropriate sample size for a study can be relatively
complicated and even controversial. Research professionals often use dif-
ferent formulas to calculate sample size—in some cases based on different
assumptions about population characteristics—and may suggest conflict-
ing sample sizes as a result. Several common misperceptions exist concern-
ing sample size calculations including the following:
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Myth 1: Bigger samples are better. The Literary Digest case demonstrates
the fallacy concerning bigger sample sizes. When researchers use
probability sampling methods, a mathematically calculated sample
size based on an appropriate formula nearly always produces trust-
worthy results with known ranges of error. Researchers can use
simple math to verify this information. When researchers use non-
probability sampling methods, there is no scientific way to deter-
mine how well a sample represents a population or how much er-
ror survey results contain. Remember, a large unrepresentative sam-
ple is no more representative than a small unrepresentative sample.
In addition, a representative sample that is unnecessarily large is
a waste of resources. A sample’s size should be the result of a re-
searcher’s purposeful decision-making process, not a number that
researchers stumble upon as they try to generate the largest sample
possible.

Myth 2: As a rule of thumb, researchers should sample a fixed percentage of
a population to produce an acceptable sample size. It is not uncommon
for those uninitiated in survey research methods to suggest using
a fixed percentage of the population to determine sample size. If
researchers sampled 10% of a 50,000-person population, for exam-
ple, they would generate a sample of 5,000 participants. Once again,
probability-based sampling methods allow the use of mathemati-
cal formulas to calculate sample sizes that normally produce highly
trustworthy results with known ranges of error. Arbitrarily sampling
a certain percentage of the population is unnecessary and results in
an arbitrary sample size. Such a practice is as illogical as if you ate a
certain percentage of the food in your refrigerator because you were
hungry. Just as the amount of food you eat should be based on your
body’s needs (with notable exceptions for mocha almond fudge ice
cream and chocolate in any form), so should a study’s sample size
be based on the requirements of a research project instead of on an
arbitrary percentage of a population.

Myth 3: Researchers should base sample sizes on industry standards or
“typical” sample sizes used in other research projects. In reality, there
is little that is standard about a research project. Although re-
searchers may use familiar formulas to determine the sample size
for a study, they should not use these formulas without careful con-
sideration. A project’s unique needs, the individual characteristics
of a population and its resulting sample, and other issues greatly
affect sampling decisions. Researchers serve the needs of clients
and organizations best when they make thoughtful sample-size de-
cisions, based on the unique requirements of individual research
projects.
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Having said all of this, we must engage in a small amount of backpedal-
ing. Many communication students (and some campaign practitioners for
that matter) have varying degrees of math phobia and short attention spans
when it comes to highly technical or theoretical information. It is neces-
sary to understand a little theory and use a small amount of basic algebra
to calculate sample sizes. With this in mind, in this text we use simple
sample-size calculation formulas and avoid math when possible. We also
try to provide a basic conceptual understanding of these formulas and the
concepts they use. In short, we take some shortcuts to make these topics as
accessible as possible. The result is that we do not follow our own advice
in some instances. Please keep in mind that there is more to this some-
times complicated topic than we discuss in this text. If you find these basic
concepts and formulas easy to understand, or if you will be involved in
research on a regular basis, you should read more about additional aspects
of sampling and sample-size calculations so that you are fully informed.

For the math-challenged among us, we offer our encouragement. Read
the next section slowly, draw pictures of the concepts if it helps you un-
derstand them, and try the math out yourself. Put in a little effort and you
should emerge with a clear understanding of the topic. To explain sample-
size calculations, first we provide a conceptual understanding of sample-
calculation concepts and processes. Then, we do some basic sample-size
calculations, based on the concepts we have explained. Finally, we calcu-
late the amount of error that exists in survey data once researchers have
completed a survey.

CALCULATING THE APPROPRIATE SAMPLE SIZE

Anyone can determine with precision the optimal size for a sample, pro-
vided they understand a few key concepts based on probability theory and
a bell-shaped curve. These concepts include sample distribution and stan-
dard deviation, confidence level, confidence interval, and variance. Once
you grasp these concepts, it is easy to understand the basis for sample-size
calculations; the rest is simply a matter of applying the formulas.

Sample Distribution and Standard Deviation

Sample distribution and standard deviation are the first and, in some ways,
most complex concepts to understand. A sample distribution is a grouping
or arrangement of a characteristic that researchers measure for each sample
member, and it reflects the frequency with which researchers assign sam-
ple characteristics to each point on a measurement scale (Williams, 1992).
Almost any characteristic that researchers can measure has a sampling
distribution, but in survey research investigators typically study sample
members’ opinions, attitudes, behaviors, and related characteristics. If we
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were to chart a sampling distribution, the result would be shaped like a
bell, provided the sampling distribution was normal. It would be tall in the
middle where the average of the sampling distribution is located because
most people would be near the average. There would be fewer people to-
ward either edge, or tails, of the bell because fewer people would have
characteristics or behaviors so far above or below the average.

If we were practitioners at a university health facility, for example, we
might conduct a survey to better understand smoking behavior among stu-
dents. We could ask a randomly selected student sample to fill out a ques-
tionnaire that contained attitudinal and behavioral questions, including a
question about the number of cigarettes participants had smoked in the
previous 7 days. Participants’ responses likely would vary greatly. Many
students would have smoked no cigarettes in the previous 7 days, whereas
other students would have smoked a high number of cigarettes. When we
compute students’ responses to our smoking question, we could use the
information to generate a sample distribution. If our research revealed the
average number of cigarettes smoked in the past week by participants was
3.5, this number would be placed under the middle of the curve at its tallest
point and most participants would be near the average, or mean, in the
large part of the bell-shaped distribution. Our sample’s smoking distribu-
tion would get smaller at its tails because fewer participants would smoke
in numbers that were far above or below average. Figure 6.2 contains a
normally distributed, bell-shaped curve for the smoking example.

FIG. 6.2. Smoking distribution example. The number in each portion of the curve shows the

percentage of the sample that corresponds to each segment. For example, 34% of this sample

smokes between 2.5 and 3.5 cigarettes per week. The percentages added together equal

more than 99% of a normal distribution. The segments of the curve are divided according

to standard deviations from the mean.
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As we planned our campaign, we could make inferences about the popu-
lation (all students at our university) based on the responses of our sample.
Error occurs when researchers take measurements from a sample and use
them to make inferences about a population because there are differences
between a sample distribution and a population distribution. We could
not determine the exact average number of cigarettes smoked weekly by
students at our university, for example, unless we conducted a census by
interviewing every student. We did not conduct a census in this exam-
ple and because of this, the responses of our sample would not exactly
represent the true responses of the population. In our smoking survey, our
sample mean for cigarettes smoked in the past 7 days might be 3.5, whereas
the true value for the population might be 3.8. The difference between the
opinions and behaviors of the sample and the opinions and behaviors of
the population is error.

As researchers, we must understand this error, so we use a tool to mea-
sure it called standard deviation. Standard deviation is a standardized mea-
sure of dispersion (or variation) around a mean. Basically, a standard devia-
tion is a standardized unit of measurement that researchers use to measure
distances from a sampling distribution’s midpoint to its outer limits (don’t
get lost here). Think of standard deviation as a simple unit of measurement.
Researchers use standard deviation to measure distance from the mean in
a bell-shaped curve in the same way a carpenter uses inches to measure
the length of a board, as Figure 6.3 shows.

Researchers use standard deviation for various purposes. If the publish-
ers of a book survey 10 people and ask them to read and rate it using a

FIG. 6.3. Normally distributed bell-shaped curve. Along the normal distribution, 1.65 standard

deviations (SD) measure 90% of the curve; 1.96 standard deviations measure 95% of the curve;

and 2.58 standard deviations measure 99% of the curve.



SAMPLING 115

scale of 0 to 10, for example, the text might receive an average rating of 5.
If all 10 people who read the book actually rated the text as a 5, the average
rating is highly accurate and there is no standard deviation. If 5 people rate
the text as a 10, however, and 5 people rate the text as a 0, the mean rating
still is 5. This time, however, the average rating is not very accurate. No
one, in fact, actually gave the text a 5 rating. The standard deviation would
be relatively large because there is a lot of dispersion among the scores.
Although the means are the same in each case, they actually are different,
and standard deviation helps us measure and understand this. Using our
smoking survey example, if every participant in our smoking survey said
they smoked 3.5 cigarettes in the past 7 days, our mean would be highly
accurate and we would have no deviation from the mean. When we ask
sample members about their smoking habits, however, we will undoubt-
edly receive different responses, and we can use the mean and standard
deviation to understand these responses.

How do standard deviation and sample distribution help us when
we calculate sample size? A standard deviation gives researchers a ba-
sis for estimating the probability of correspondence between the normally
distributed, bell-shaped curve of a perfect population distribution and a
probability-based sample distribution that always contains some error. Re-
searchers call standard deviation measurements standard because they as-
sociate with, or measure, specific areas under a normal curve. One standard
deviation measures about 68% of a normally distributed curve; two stan-
dard deviations measure a little more than 95% of a normally distributed
curve; and three standard deviations measure more than 99% of a normally
distributed curve. Research professionals use standard deviations to de-
termine the confidence level associated with a sample, as we demonstrate
later in this chapter.

Confidence Level

A confidence level is the degree of certainty researchers can have when they
draw inferences about a population based on data from a sample. Basically,
it is the level of probability researchers have that they can accurately gen-
eralize a characteristic they find in a sample to a population. In essence,
the confidence level answers the question, “How confident are we that
our sample is representative of the population?” A confidence level of
90% means researchers are 90% confident that the sample accurately rep-
resents the population. In the same way, a confidence level of 95% means
researchers are 95% confident that the inferences they draw about the pop-
ulation from the sample are accurate.

This raises an important question: Are researchers really 90% or 95%
confident about the representativeness of the sample, or are they simply
guessing, perhaps based on their experience? In fact, researchers’ claims



116 CHAPTER 6

of a confidence level are accurate because the confidence level is based on
standard deviations. Remember, a standard deviation allows researchers
to estimate probability between a normally distributed population curve
and a less-than-perfect sampling distribution because standard deviation
measurements associate with specific areas under the curve. A standard
deviation of 1.65 measures 90% of a normally distributed curve, a standard
deviation of 1.96 measures 95% of a normally distributed curve, and a
standard deviation of 2.58 measures 99% of a normally distributed curve
(remember these numbers because we will use them again shortly).

This means that when researchers calculate sample size, they select stan-
dard deviations associated with specific areas under a normally distributed
curve to provide the desired confidence level. When investigators use 1.65
in the sample-size formula, they calculate a sample size that provides a
90% confidence level; when they use 1.96 in the formula, they calculate a
sample size that provides a 95% confidence level; when they use 2.58 in
the formula, they calculate a sample size that provides a 99% confidence
level.

Most often, researchers use 1.96 standard deviations to calculate sample
size, resulting in a 95% confidence level. A confidence level of 95% means
our sample statistics will more-or-less accurately represent the true param-
eter of a population 95% of the time. Here is another way to think about
this: If we conducted a survey of the same population 100 times, our sam-
ple responses would be accurate in 95 of the 100 surveys we conducted.
The 95% confidence level is a standard convention of social science, but
researchers can use other confidence levels. In particular, if researchers de-
sire an exceptionally high degree of confidence when making inferences
about a population based on data from a sample, they may choose a higher
confidence level. Rarely do researchers use a lower confidence level.

Confidence Interval

A confidence interval is a range or margin of error that researchers permit
when making inferences from a sample to a population. As noted, the in-
ferences researchers make about a population based on sample data are not
completely accurate. Unless investigators conduct a census, the observed
values they collect from a sample (statistics) will not provide completely
accurate information concerning a population’s true values (parameters).

The population parameter falls somewhere within the range of the con-
fidence interval, although researchers never are exactly sure where the
parameter is located unless they conduct a census. The confidence interval
usually is stated as a positive-to-negative range, such as ±3% error or ±5%
error. A confidence interval of ±3% has a total error margin of 6%, whereas
a confidence interval of ±5% has a total error margin of 10%. If 57% of
registered voters in California express support for a citizens’ initiative in a
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survey with a ±5% confidence interval, for example, the true population
value may be as high as 62% (+5%) or as low as 52% (−5%).

What is an acceptable confidence interval for survey results? As is of-
ten the case in survey research, the answer depends on various factors.
Many applied communication and market research surveys have a ±5%
confidence interval, but there is nothing critical about this range of error.
Researchers commonly choose smaller confidence levels when they want
to reduce the margin of error and increase the precision of the inferences
they draw concerning a population. When media organizations poll the
public to predict election outcomes, for example, they often use a smaller
confidence interval, such as ±3%. Ultimately, researchers should make de-
cisions about confidence intervals based on the necessities and challenges
of individual research projects.

It may surprise you to learn that the confidence level and the confidence
interval do not have to add to 100%. Those new to research often assume
the confidence level and confidence interval must add to 100% because
researchers often conduct surveys with a ±5% error at a 95% confidence
level. It is incidental that these numbers add up to 100. It is legitimate to
conduct a survey with a ±3% margin of error at a 95% confidence level,
for example, or a survey with a ±2.5% margin of error at a 99% confi-
dence level. In addition, many researchers use a 95% confidence level as
a standard and only make adjustments to the confidence interval when
calculating sample size. As we noted previously, researchers should make
decisions concerning confidence levels and confidence intervals based on
the requirements of individual research projects.

Variance

Simply put, variance is dispersion. When researchers calculate sample size,
it helps them to understand how the characteristic or variable they are
examining is dispersed throughout a population. If we want to understand
the use of public transportation in our community as a way to reduce traffic
and pollution, for example, it would be useful to know the percentage of
community members who actually use public transportation. In short, we
want to know how public transportation use is dispersed throughout our
community as a characteristic of the population.

For research purposes, it is useful to consider variance as a simple per-
centage. Community members who use public transportation, for example,
fit into one category that makes up a certain percentage of the population.
Community members who do not use public transportation do not belong
in this category and make up the remaining percentage of the popula-
tion. Together, the percentages add up to 100%. Researchers can examine
the dispersion of most variables this way because a population can be di-
vided into two categories on the basis of almost any characteristic. This
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includes, for example, students who smoke cigarettes and students who
do not smoke cigarettes, community residents who live in a certain neigh-
borhood and residents who live in other neighborhoods, workers who are
employed and workers who are unemployed, and people who drink coffee
and people who do not.

Any time researchers examine a variable or characteristic, they want to
know its dispersion within a population because they can use this infor-
mation to help them calculate sample size. Population members who have
a characteristic or variable fit into a single category, and researchers use
this to distinguish them from the rest of the population. In the formula we
examine shortly, the percentage of a population that belongs to a category
is expressed as a decimal. The remaining percentage of the population
(that does not belong to the category) also is expressed as a decimal and
subtracted from 1. Together, these two numbers add to 1.0 or 100% of the
population.

Despite the importance of variance, researchers often set aside variance
percentages when they calculate sample size because percentages only re-
flect the dispersion of a single characteristic or variable in a population.
Researchers commonly examine multiple variables in a single survey, each
with a different percentage of dispersion. Each variable would require a
different sample size, which is impractical and unnecessary. Researchers
address this problem by using the largest measure of variance available
to calculate sample size because, at a minimum, it provides an acceptable
measure of dispersion for all variables. To use the largest measure of vari-
ance, researchers use .5 (or 50%) as the percentage of a population that
belongs to a category. Researchers also use .5 as the percentage for the rest
of the population because 1 − .5 = .5 and these percentages add up to 1.0,
or 100%, of the population. Although it is not necessary for researchers to
use .5 and 1 − .5 in every sample-size calculation, this practice is regularly
required by the necessities of a multifaceted research project, and so we
use it in all of our sample-size calculations.

SAMPLE-SIZE FORMULA

Now that you understand standard deviation, confidence level, confidence
interval, and variance, you are ready to calculate sample size. Researchers
commonly use the following formula—or formulas that are similar but
more complicated—to calculate sample size:

n =
(

cl
ci

)2

(v)(1 − v)

where
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n (number) = the number of completed interviews or what we call the
final sample size

cl (confidence level) = the standard deviation associated with a specific
area under a normal curve and corresponding to the desired confi-
dence level (by definition, 90% confidence level = 1.65; 95% confi-
dence level = 1.96; and 99% confidence level = 2.58)

ci (confidence interval) = the margin of error expressed as a decimal
(±3% error would be expressed as .03; ±5% error would be expressed
as .05; ±10% error would be expressed as .10)

v (variance) = the variance or distribution of a variable in a population,
expressed as a percentage in decimal form. For our purposes, variance
is always .5. Note also that 1 − v is the percentage of a population that
has no variable distribution; 1 − v always is .5 when v is .5, as we have
recommended.

Here is a basic sample-size calculation using this formula. We calculate
the sample size at a 95% confidence level and a ±5% margin of error, or
confidence interval:

n =
(

1.96
.05

)2

(.5) (.5) = 384

Based on this formula, we need a final sample size of 384 people—or 384
completed interviews—to produce findings with a ±5% margin of error at
a 95% confidence level.

What if we want less error (a smaller confidence interval), meaning more
trust in the precision of our survey results? It is easy to adjust the formula to
fit the demands of any research situation. In the following calculations, for
example, we determine sample sizes based on different confidence levels.
We calculate each sample size with a ±5% confidence interval, but with
different confidence levels to show how different confidence levels affect
sample size. To change confidence levels, we use standard deviations that
correspond to different areas under a normally distributed, bell-shaped
curve. Recall that the standard deviation for a 90% confidence level is 1.65;
the standard deviation for a 95% confidence level is 1.96, and the standard
deviation for a 99% confidence level is 2.58. Notice that we increase sample
size as we increase the confidence level. The only difference in each calcula-
tion is the level of confidence researchers have when they make inferences
from a sample to a population. Here is the final sample size—or number of
completed interviews—needed for a survey with a 90% confidence level
and a ±5% margin of error:

n =
(

1.65
.05

)2

(.5) (.5) = 272
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Here is the final sample size (number of completed interviews) for a survey
with a 95% confidence level and a ±5% margin of error:

n =
(

1.96
.05

)2

(.5) (.5) = 384

Finally, here is the sample size (number of completed interviews) for a
survey with a 99% confidence level with a ±5% margin of error:

n =
(

2.58
.05

)2

(.5) (.5) = 666

How do changes in the margin of error, or confidence interval, affect final
sample size (the completed number of interviews) researchers need? In the
following calculations, we determine sample sizes with the same level of
confidence but differing margins of error. Each sample size is calculated
at a 95% confidence level. Here is the final sample size for a survey with a
±10% margin of error at a 95% confidence level:

n =
(

1.96
.10

)2

(.5) (.5) = 96

Here is the final sample size for a survey with a ±5% margin of error at a
95% confidence level:

n =
(

1.96
.05

)2

(.5) (.5) = 384

Finally, here is the final sample size for a survey with a ±3% margin of
error at a 95% confidence level:

n =
(

1.96
.03

)2

(.5) (.5) = 1, 067

In each case, we reduced the margin of error while maintaining a consistent
level of confidence.

ERROR CALCULATIONS

The same information you learned to calculate sample size also will help
you calculate the margin of error for a survey, once you have collected
data. In most cases, the number of completed interviews—or what we
call the final sample size—is not 384 or 1,060 completed interviews, even if
this is researchers’ targeted sample size. Researchers aiming for a specific
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sample size typically collect additional interviews for various reasons. Re-
search staff may have to throw out some interviews, for example, because
of problems with data collection, such as a survey that is only partially
complete. At other times, researchers may collect a larger sample size so
they have a stronger basis from which to make sample subgroup compar-
isons. Regardless of the reason, researchers can use standard deviation,
confidence level, and variance to calculate the margin of error that exists
in a survey’s results based on its final sample size. Here is the formula:

e = cl

√
(v)(1 − v)

n
(100)

where

e (error) = the final margin of error for the completed survey based on
sample size

cl (confidence level) = the standard deviation associated with a specific
area under a normal curve and corresponding to the desired confi-
dence level (as before, 90% confidence level = 1.65; 95% confidence
level = 1.96; and 99% confidence level = 2.58)

v (variance) = the variance or distribution of a variable in a population,
expressed as a percentage in decimal form. As before, variance always
is .5, and 1 − v is the percentage of a population that has no variable
distribution; 1 − v always is .5, when v is .5 as we have recommended;

n (number) = the number of completed interviews or what we call the
final sample size.

Here is the margin of error for a survey in which the final sample size, or
number of completed interviews, is 485. The calculation is made based on
a 95% confidence level:

1.96

√
(.5)(.5)

485
(100) = 4.45

In this example, the margin of error for this survey is ±4.45% based on 485
completed interviews.

How do changes in the confidence level affect the margin of error, or
sampling interval, for survey results? In the following calculations, we
determine margins of error for survey results using the same final sample
size, or completed number of interviews, at different levels of confidence.
We calculate each margin of error using a final sample size of 575. Here is
the margin of error at a 90% confidence level:

1.65

√
(.5)(.5)

575
(100) = 3.44
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Here is the margin of error at a 95% confidence level:

1.96

√
(.5)(.5)

575
(100) = 4.09

Here is the margin of error at a 99% confidence level:

2.58

√
(.5)(.5)

575
(100) = 5.38

These calculations reveal the trade-off between confidence level and the
margin of error, or confidence interval, for a survey. If researchers want to
increase their level of confidence or certainty as they make inferences from
sample data to a population, they must be willing to accept a larger range
of error in their survey’s results. If researchers desire a smaller range of
error, they must be willing to accept a lower confidence level when they
make inferences.

ISSUES AND ASSUMPTIONS

The formulas we have presented require various assumptions and raise
some important issues. We have addressed many of these issues and as-
sumptions in the preceding sections, but note that you may need to alter
these formulas or disregard them completely, as the assumptions on which
we have based these formulas change. One of the primary assumptions of
all sample-size formulas, for example, concerns researchers’ use of proba-
bility sampling methods. When researchers use nonprobability sampling
methods, no sample-size formula will produce an accurate result because
it is impossible for researchers to determine the representativeness of the
sample.

One issue we have not addressed concerns the need to correct the for-
mula according to a population’s size. Researchers sometimes use sample-
size formulas that contain something called finite population correction. Fi-
nite population correction is an adjustment factor that is part of a sample-
size formula. Table 6.1 contains population-corrected final sample sizes
for probability-based survey results with a ±5% margin of error at a 95%
confidence level. The appropriate sample size for a population of 1 million
people is 384, the same sample size we calculated for a survey with a 95%
confidence level and a ±5% margin of error.

Is it necessary for researchers to correct for population size? Generally,
most researchers have little need for population correction unless the size
of the population is small and the sample is more than 5% of the total popu-
lation (Czaja & Blair, 1996). In most sample surveys, population correction
makes little difference in sample-size calculations and researchers simply
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TABLE 6.1
Population-Corrected Sample Sizes

Population Population Population
Size (N) Sample Size (n) Size (N) Sample Size (n) Size (N) Sample Size (n)

5 5 650 242 2,500 333

10 10 700 248 3,000 341

15 15 750 254 3,500 346

20 19 800 260 4,000 351

25 24 850 265 4,500 354

50 44 900 269 5,000 357

75 63 950 274 6,000 361

100 80 1,000 278 7,000 364

150 108 1,100 285 8,000 367

200 132 1,200 291 9,000 368

250 152 1,300 297 10,000 370

300 169 1,400 302 15,000 375

350 183 1,500 306 20,000 377

400 196 1,600 310 25,000 378

450 207 1,700 313 50,000 381

500 217 1,800 317 75,000 382

550 226 1,900 320 100,000 383

600 234 2,000 322 275,000+ 384

Note: Figures reported are for probability-based survey results with a ±5% margin of error at a 95%

confidence level. Calculations are based on Cochran’s (1977) formula for finite population correction. Further

information is available in Kish (1965). According to this formula, even populations more than 1 million

require a sample size of 384.

exclude a population correction factor because it is unnecessary. In fact,
researchers would generally use the same sample size for a survey of regis-
tered voters in Chicago, a survey of registered voters in Illinois, or a survey
of all registered voters in the entire United States! Although there are im-
portant exceptions, once a population reaches a certain size, sample sizes
generally remain consistent. For this reason, and to keep our sample cal-
culations simple, the sample size formula we presented does not include
population correction.

FINAL THOUGHTS

Sampling is a powerful tool that helps practitioners obtain accurate infor-
mation at a reasonable cost. Researchers’ selection of a proper sampling
method is as important as their selection of a proper research method to the
success of a study. Even the most carefully planned and executed study will
produce untrustworthy results if research managers use an improper sam-
pling method. Although sampling can be complex, it is in readers’ own best
interest to learn all they can about the sample-selection procedures used
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in a study. Few people would buy an automobile without first inspecting
the vehicle they are purchasing, yet a surprising number of practitioners
make research “purchases” without ever inspecting one of the most critical
elements of their research project, the sampling procedures used in a study.

As demonstrated in this chapter, it is not necessary for practitioners to
become sampling experts to understand many important issues related
to sampling selection processes. It is necessary, however, for practitioners
to understand basic distinctions in sampling methods and to work with
researchers to ensure that the sample used in a study has the greatest
chance of accurately representing the attitudes, opinions, and behaviors of
the population from which it is drawn.


